Source code for alogos.systems.dsge.init_individual

"""Initialization functions to create a DSGE individual."""

from ... import _grammar
from ... import exceptions as _exceptions
from ..._utilities.parametrization import get_given_or_default as _get_given_or_default
from .._shared import init_individual as _init_individual
from . import _cached_calculations
from . import default_parameters as _dp
from . import mapping as _mapping
from . import representation as _representation


[docs]def given_genotype(grammar, parameters=None): """Create an individual from a given genotype. Parameters ---------- grammar : `~alogos.Grammar` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``init_ind_given_genotype`` : Data for a DSGE `~.representation.Genotype`. Raises ------ InitializationError If the initialization of the individual fails. Notes ----- The genotype is converted to a derivation tree and phenotype with the `~.mapping.forward` mapping function of this system. """ return _init_individual.given_genotype( grammar, parameters, _dp, _representation, _mapping )
[docs]def given_derivation_tree(grammar, parameters=None): """Create an individual from a given derivation tree. Parameters ---------- grammar : `~alogos.Grammar` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``init_ind_given_derivation_tree`` : Data for a `~alogos._grammar.data_structures.DerivationTree`. Raises ------ InitializationError If the initialization of the individual fails. Notes ----- The leaf nodes of the derivation tree are read to create the phenotype. The phenotype is converted to a genotype with the `~.mapping.reverse` mapping function of this system. """ return _init_individual.given_derivation_tree( grammar, parameters, _dp, _representation, _mapping )
[docs]def given_phenotype(grammar, parameters=None): """Create an individual from a given phenotype. Parameters ---------- grammar : `~alogos.Grammar` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``init_ind_given_phenotype`` (`str`) : Data for a phenotype, which needs to be a string of the grammar's language. Raises ------ InitializationError If the initialization of the individual fails. Notes ----- The phenotype is converted to a genotype and derivation tree with the `~.mapping.reverse` mapping function of this system. """ return _init_individual.given_phenotype( grammar, parameters, _dp, _representation, _mapping )
[docs]def random_genotype(grammar, parameters=None): """Create an individual from a random genotype. Parameters ---------- grammar : `~alogos.Grammar` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``init_depth`` : Initial maximum depth of a random derivation tree. Raises ------ InitializationError If the initialization of the individual fails. References ---------- - Software implementations by the authors of the approach - Python: `dsge <https://github.com/nunolourenco/dsge>`__ - `core/sge.py <https://github.com/nunolourenco/dsge/blob/master/src/core/sge.py>`__: ``def generate_random_individual()`` is the implementation of individual initialization by generating a random genotype """ # Parameter extraction init_max_depth = _get_given_or_default("init_depth", parameters, _dp) # Cache look-up non_recursive_rhs = grammar._lookup_or_calc( "dsge", "non_recursive_rhs", _cached_calculations.non_recursive_rhs, grammar ) _, nt_to_gene, _, nt_to_num_options, _ = grammar._lookup_or_calc( "dsge", "maps", _cached_calculations.maps, grammar ) # Transformation try: genotype = [[] for _ in range(len(grammar.nonterminal_symbols))] derivation_tree = _grammar.data_structures.DerivationTree(grammar) _NT = _grammar.data_structures.NonterminalSymbol current_depth = 0 stack = [(derivation_tree.root_node, current_depth)] while stack: # 1) Choose nonterminal: DSGE uses the leftmost, unexpanded nonterminal chosen_nt_idx = 0 chosen_nt_node, current_depth = stack.pop(chosen_nt_idx) nt = chosen_nt_node.symbol gene_idx = nt_to_gene[nt] # 2) Choose rule: DSGE decides by the next integer in the gene of the nonterminal rules = grammar.production_rules[nt] if len(rules) == 1: chosen_rule_idx = 0 else: chosen_rule_idx = _cached_calculations.get_random_valid_codon( nt, current_depth, init_max_depth, nt_to_num_options, non_recursive_rhs, ) chosen_rule = rules[chosen_rule_idx] genotype[gene_idx].append(chosen_rule_idx) # 3) Expand the chosen nonterminal (1) with the rhs of the chosen rule (2) new_nodes = derivation_tree._expand(chosen_nt_node, chosen_rule) # 4) Add new nodes that contain a nonterminal to the stack new_nt_nodes = [ (node, current_depth + 1) for node in new_nodes if isinstance(node.symbol, _NT) ] stack = new_nt_nodes + stack random_genotype = _representation.Genotype(genotype) except Exception: _exceptions.raise_init_ind_rand_gt_error() if parameters is None: parameters = dict() parameters["init_ind_given_genotype"] = random_genotype return given_genotype(grammar, parameters)
[docs]def gp_grow_tree(grammar, parameters=None): """Create an individual from a random tree grown.""" return _init_individual.gp_grow_tree( grammar, parameters, _dp, _representation, _mapping )
[docs]def pi_grow_tree(grammar, parameters=None): """Create an individual from a random tree grown in a position-independently fashion.""" return _init_individual.pi_grow_tree( grammar, parameters, _dp, _representation, _mapping )
[docs]def gp_full_tree(grammar, parameters=None): """Create an individual from a random tree that is grown fully to a maximum depth.""" return _init_individual.gp_full_tree( grammar, parameters, _dp, _representation, _mapping )
[docs]def ptc2_tree(grammar, parameters=None): """Create an individual from a tree grown with Nicolau's "PTC2". The original PTC2 method for growing random trees was invented by Sean Luke in 2000. Some slightly modified variants were introduced later by other authors. This function implements a PTC2 variant described by Miguel Nicolau in 2017 in section "3.3 Probabilistic tree-creation 2 (PTC2)" of the publication. It restricts tree size not with a maximum tree depth but rather with a maximum number of expansions and if possible remains strictly below this limit. Parameters ---------- grammar : `~alogos.Grammar` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``init_ind_ptc2_max_expansions`` (`int`): The maximum number of nonterminal expansions that may be used to grow the tree. Raises ------ InitializationError If the initialization of the individual fails. Notes ----- The leaf nodes of the derivation tree are read to create the phenotype. The phenotype is converted to a genotype with the `~.mapping.reverse` mapping function of this system. References ---------- - 2000, Luke: `Two Fast Tree-Creation Algorithms for Genetic Programming <https://doi.org/10.1109/4235.873237>`__ - "PTC1 is a modification of GROW that allows the user to provide probabilities of appearance of functions in the tree, plus a desired expected tree size, and guarantees that, on average, trees will be of that size." - "With PTC2, the user provides a probability distribution of requested tree sizes. PTC2 guarantees that, once it has picked a random tree size from this distribution, it will generate and return a tree of that size or slightly larger." - 2010, Harper: `GE, explosive grammars and the lasting legacy of bad initialisation <https://doi.org/10.1109/CEC.2010.5586336>`__ - "The PTC2 methodology is extended to GE and found to produce a more uniform distribution of parse trees." - "If the algorithm is called in a ramped way (i.e. starting with a low number of expansions, say 20, and increasing until say 240) then a large number of trees of different size and shapes will be generated." - 2017, Nicolau: `Understanding grammatical evolution: initialisation <https://doi.org/10.1007/s10710-017-9309-9>`__: - 3.3 Probabilistic tree-creation 2 (PTC2) - 3.6 Probabilistic tree-creation 2 with depth limit (PTC2D) - 2018, Ryan, O'Neill, Collins: `Handbook of Grammatical Evolution <https://doi.org/10.1007/978-3-319-78717-6>`__ - p. 13: "More recent work on initialisation includes that of Nicolau, who demonstrated that across the problems examined in their study, a variant of Harper’s PTC2 consistently outperforms other initialisations" """ return _init_individual.ptc2_tree( grammar, parameters, _dp, _representation, _mapping )