Source code for alogos.systems.pige.neighborhood

"""Neighborhood functions to generate nearby genotypes for piGE."""

from ... import _grammar
from ..._utilities import argument_processing as _ap
from ..._utilities.parametrization import get_given_or_default as _get_given_or_default
from .. import _shared
from . import default_parameters as _default_parameters
from . import representation as _representation


# Shortcuts for brevity and minor speedup
_NT = _grammar.data_structures.NonterminalSymbol
_T = _grammar.data_structures.TerminalSymbol


[docs]def int_replacement(grammar, genotype, parameters=None): """Systematically change a chosen number of int codons. Parameters ---------- grammar : `~alogos.Grammar` genotype : `~.representation.Genotype` parameters : `dict` or `~alogos._utilities.parametrization.ParameterCollection`, optional Following keyword-value pairs are considered by this function: - ``neighborhood_distance`` (`int`) : The distance from the original genotype to a new genotype in terms of replaced int codons. - ``neighborhood_max_size`` (`int`) : Maximum number of neighbor genotypes to generate. - ``neighborhood_only_terminals`` (`bool`) : If `True`, only replace codons that represent terminals. - ``max_expansions`` (`bool`) : Maximum number of nonterminal expansions used in a derivation. - ``max_wraps`` (`bool`) : Maximum number of wraps of the genotype that can be used in a derivation. - ``stack_mode`` (`str`) : Mode by which new nonterminals are added to the stack of all nonterminals that were not yet expanded. Possible values: - ``"start"``: At the beginning of the stack. - ``"end"``: At the end of the stack. - ``"inplace"``: At the position where the nonterminal was located that was rewritten and led to the new nonterminal. Returns ------- neighbors : `list` of `~.representation.Genotype` objects """ # Parameter extraction distance = _get_given_or_default( "neighborhood_distance", parameters, _default_parameters ) max_size = _get_given_or_default( "neighborhood_max_size", parameters, _default_parameters ) only_t = _get_given_or_default( "neighborhood_only_terminals", parameters, _default_parameters ) max_expansions = _get_given_or_default( "max_expansions", parameters, _default_parameters ) max_wraps = _get_given_or_default("max_wraps", parameters, _default_parameters) stack_mode = _get_given_or_default("stack_mode", parameters, _default_parameters) # Argument processing if not isinstance(genotype, _representation.Genotype): genotype = _representation.Genotype(genotype) # Get alternative choices per position by going through a forward mapping choices = _get_choices_per_position( grammar, genotype.data, max_expansions, max_wraps, stack_mode, only_t ) num_choices_per_pos = [len(x) for x in choices] # Generate combinations of choices combinations = _shared.neighborhood.generate_combinations( num_choices_per_pos, distance, max_size ) # Construct neighborhood genotypes from combinations nbrs = [] n = len(genotype) gt_unrolled = [genotype.data[i % n] for i in range(len(choices))] for comb in combinations: # Semantics of comb: 0 means no change, >0 points to a certain alternative choice data = [ choices[i][val - 1] if val > 0 else gt_unrolled[i] for i, val in enumerate(comb) ] nbrs.append(_representation.Genotype(data)) return nbrs
def _get_choices_per_position( grammar, codons, max_expansions, max_wraps, stack_mode, only_terminals ): """Determine alternative choices for each position in the genotype.""" # Argument processing _ap.str_arg("stack_mode", stack_mode, vals=("start", "end", "inplace")) # Create derivation tree dt = _grammar.data_structures.DerivationTree(grammar) stack = [dt.root_node] num_codons = len(codons) codon_counter = 0 expansion_counter = 0 choices = [] while stack: # Check stop conditions if max_wraps is not None and (codon_counter // num_codons) > max_wraps: break if max_expansions is not None and expansion_counter >= max_expansions: break # 1) Choose nonterminal: piGE uses an "order codon" to select one from all unexpanded nt order_codon = codons[codon_counter % num_codons] codon_counter += 1 num_nonterminals = len(stack) chosen_nt_idx = order_codon % num_nonterminals chosen_nt_node = stack.pop(chosen_nt_idx) # 2) Choose rule: piGE uses a "content codon" to select a rule from 1 to n avaiable ones content_codon = codons[codon_counter % num_codons] codon_counter += 1 rules = grammar.production_rules[chosen_nt_node.symbol] num_rules = len(rules) chosen_rule_idx = content_codon % num_rules chosen_rule = rules[chosen_rule_idx] # 3) Expand the chosen nonterminal with the rhs of the chosen rule new_nodes = dt._expand(chosen_nt_node, chosen_rule) expansion_counter += 1 # 4) Add new nodes that contain a nonterminal to the stack new_nt_nodes = [node for node in new_nodes if isinstance(node.symbol, _NT)] if stack_mode == "start": # Alternative 1: Insert new nodes at start, suggested by partial example in 2004 paper stack = new_nt_nodes + stack elif stack_mode == "end": # Alternative 2: Insert new nodes at end, suggested by full example in 2010 paper # shown explicitly in Fig. 3 stack = stack + new_nt_nodes elif stack_mode == "inplace": # Alternative 3: Insert new nodes at position of the expanded nt, suggested by # sentential forms during a derivation and by handbook in 2018 stack[chosen_nt_idx:chosen_nt_idx] = new_nt_nodes # Remember alternative choices for the current production rule if only_terminals: other_rule_indices = [ idx for idx, rule in enumerate(rules) if idx != chosen_rule_idx and any(isinstance(sym, _T) for sym in rule) ] else: other_rule_indices = [ idx for idx in range(num_rules) if idx != chosen_rule_idx ] choices.append([]) # order codon: fixed, use no alternatives choices.append(other_rule_indices) # content codon: changable, use alternatives return choices