OpenAI Gym: CartPole-v1¶
This notebook demonstrates how grammar-guided genetic programming (G3P) can be used to solve the CartPole-v1 problem from OpenAI Gym. This is achieved by searching for a small program that defines an agent, who uses an algebraic expression of the observed variables to decide which action to take in each moment.
Caution: This notebook was run with gym v0.20.0 (pip install gym==0.20.0) and pyglet v1.5.27 (pip install pyglet==1.5.27). Gym deprecated “Pendulum-v0” from v0.20.0 to v.0.21.0. Gym changed its API from v0.25.2 to v0.26.0. Pyglet changed its API from 1.5.27 to 2.0.0.
References¶
OpenAI Gym website
Classic problems from control theory: an overview of environments
CartPole-v1: the environment solved here
GitHub
CartPole-v0: details on the previous version of the environment solved here
Leaderboard: community wiki to track user-provided solutions
Example solution: a fixed policy written by Zhiqing Xiao
[1]:
import time
import warnings
import alogos as al
import gym
import unified_map as um
[2]:
warnings.filterwarnings('ignore')
Preparation¶
1) Environment¶
CartPole-v1: The aim is to move a cart (black) such that it balances a pendulum (brown) without moving too far from the center. The agent observes current position and velocity of the cart, as well as angle and velocity of the pole. It can act by pushing the cart to the left (value 0) or to the right (value 1).
[3]:
env = gym.make('CartPole-v1')
2) Functions to run single or multiple simulations¶
It allows an agent to act in an environment and collect rewards until the environment signals it is done.
[4]:
def simulate_single_run(env, agent, render=False):
observation = env.reset()
episode_reward = 0.0
while True:
action = agent.decide(observation)
observation, reward, done, info = env.step(action)
episode_reward += reward
if render:
time.sleep(0.03)
env.render()
if done:
break
env.close()
return episode_reward
[5]:
def simulate_multiple_runs(env, agent, n):
total_reward = sum(simulate_single_run(env, agent) for _ in range(n))
mean_reward = total_reward / n
return mean_reward
Example solutions¶
[6]:
num_sim = 200
1) By Zhiqing Xiao¶
[7]:
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
action = int(3. * angle + angle_velocity > 0.)
return action
agent = Agent()
simulate_multiple_runs(env, agent, num_sim)
[7]:
500.0
2) By previous runs of evolutionary optimization¶
[8]:
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
output = (((1.00+angle)+velocity)+angle_velocity)
action = int(output)
return action
agent = Agent()
simulate_multiple_runs(env, agent, num_sim)
[8]:
500.0
[9]:
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
output = ((1.00+(1.92*angle))+(1.12*angle_velocity))
action = int(output)
return action
agent = Agent()
simulate_multiple_runs(env, agent, num_sim)
[9]:
500.0
[10]:
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
output = ((1.25**angle_velocity)+angle)
action = int(output)
return action
agent = Agent()
simulate_multiple_runs(env, agent, num_sim)
[10]:
500.0
Definition of search space and goal¶
1) Grammar¶
This grammar defines the search space: a Python program that creates an Agent who uses an algebraic expression of the observed variables to decide how to act in each situation.
[11]:
ebnf_text = """
PROGRAM = L0 NL L1 NL L2 NL L3 NL L4 NL L5
L0 = "class Agent:"
L1 = " def decide(self, observation):"
L2 = " position, velocity, angle, angle_velocity = observation"
L3 = " output = " EXPR
L4 = " action = 0 if output < 0.0 else 1"
L5 = " return action"
NL = "\n"
EXPR = VAR | CONST | "(" EXPR OP EXPR ")"
VAR = "position" | "velocity" | "angle" | "angle_velocity"
CONST = DIGIT "." DIGIT DIGIT
OP = "+" | "-" | "*" | "/" | "**"
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
"""
grammar = al.Grammar(ebnf_text=ebnf_text)
2) Objective function¶
The objective function gets a candidate solution (=a string of the grammar’s language) and returns a fitness value for it. This is done by 1) executing the string as a Python program, so that it creates an agent object, and then 2) using the agent in multiple simulations to see how good it can handle different situations: the higher the total reward, the better is the candidate.
[12]:
def string_to_agent(string):
local_vars = dict()
exec(string, None, local_vars)
Agent = local_vars['Agent']
return Agent()
def objective_function(string):
agent = string_to_agent(string)
avg_reward = simulate_multiple_runs(env, agent, 30)
return avg_reward
Generation of a random solution¶
Check if grammar and objective function work as intended.
[13]:
random_string = grammar.generate_string()
print(random_string)
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
output = 4.96
action = 0 if output < 0.0 else 1
return action
[14]:
objective_function(random_string)
[14]:
9.366666666666667
Search for an optimal solution¶
Evolutionary optimization with random variation and non-random selection is used to find increasingly better candidate solutions.
1) Parameterization¶
[15]:
num_ind = 100
ea = al.EvolutionaryAlgorithm(
grammar, objective_function, 'max', max_or_min_fitness=500,
population_size=num_ind, offspring_size=num_ind,
evaluator=um.univariate.parallel.futures, verbose=True)
2) Run¶
[16]:
best_ind = ea.run()
Progress Generations Evaluations Runtime (sec) Best fitness
..... ..... 10 920 8.2 238.33333333333334
..... ..... 20 1398 13.9 238.33333333333334
..... ..... 30 2021 21.4 238.33333333333334
..... ..... 40 2694 29.5 493.6666666666667
..... ..... 50 3395 38.3 493.6666666666667
..... ..... 60 4126 46.9 493.6666666666667
..... ..... 70 4809 53.7 493.6666666666667
..... ..... 80 5563 62.7 500.0
Finished 80 5563 64.0 500.0
3) Result¶
[17]:
string = best_ind.phenotype
print(string)
class Agent:
def decide(self, observation):
position, velocity, angle, angle_velocity = observation
output = (angle-((velocity*angle)+(((((velocity-(angle_velocity/angle))*angle)+((velocity/9.45)/5.94))/6.45)/4.32)))
action = 0 if output < 0.0 else 1
return action
[18]:
agent = string_to_agent(string)
simulate_multiple_runs(env, agent, 100)
[18]:
500.0
[19]:
simulate_single_run(env, agent, render=True)
[19]:
500.0